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A practical procedure for synthesizing distributed, lumped active
(DLA) networks is developed by determining a set of equivalent rational
pole positions corresponding to the amplitude response of three specifie
DLA networks which together allow the realization of filters with left
half-plane poles and jw axis zeros. An example of the synthesis of a
5-pole, 4 jw axis zero elliptic function low-pass filter is given.
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INTRODUCTION

The increasing importance of linear integrated circuits makes it
vitally necessary that a practical, economical means be found to realize
transfer functions that normally require inductive components without the
use of inductors, since it is not practical in most cases to integrate
inductors (ref. 1, pg. 36). Additionally, the size and weight of inductive
components is a severe disadvantage for many other applications (satellites
and space probes, for example).

Many approaches to active RC synthesis have been used, each with a
Particular advantage in specific cases. The lumped element active RC
networks using a voltage-controlled voltage source (VCVS), as introduced
by Sallen and Key (ref. 2), use a relatively large number of passive ele-
ments whereas the active element is relatively simple. Further, those
realizations using fewer passive elements tend to require a more complex
active system (e.g., gyrator realization (ref. 3, pg. 140)). As will be
shown, the use of distributed, lumped, .active (DLA) systems in which the
active element is a VCVS can greatly reduce the number of passive com-
Ponents while using a simple active element, and in addition, in many cases
allow the use of a very simple VCVS.

A practical computational procedure has been developed for enalyzing
DLA networks, and from this a general synthesis method was evolved whereby
the amplitude response corresponding to any combination of left half-plane
(LHP) poles and jw axis zeros can be realized by cascading a few simple
DIA RC networks (ref. k4).
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TRANSFER FUNCTIONS NEEDED

If we now consider the synthesis problem in general, a linear system
rational transfer function can be factored into a product of complex root
quadratics and first-degree terms (for practical reasons, m < n is assumed) as
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Each quadratic factor needed can then be realized by passive RC ele-
ments combined with a VCVS. The VCVS is chosen for simplicity and avail-
ability in practical and integrated form, and to allow the overall transfer
function to be obtained by simple cascading of the individual quadratic
factor network realizations (ref. 5). A passive RC realization of the
first-degree term (or terms) is then added in cascade. In this way, no
additional active elements are needed. Active synthesis procedures need
therefore only be applied to the quadratic terms, which, in the most general
case, will be of the form shown in Eq. (1). However, we will consider only
those cases in which the zeros lie on the jw axis (ay = oz =as5 . « « = 0)
since these are generally the most useful. The networks developed here are,

however, easily modified to produce complex zeros anywhere in the p plane
(ref. 6).

(p) = K

(1)

ACTIVE RC NETWORKS

Figure 1(a) shows & lumped active RC network previously used by the

_ author to realize two complex poles and two jw axis zeros (ref. 7). Fig-
ure 1(b) shows a DLA network of the type to be discussed in this paper
which produces essentially the same amplitude response as the network of
Fig. 1(a), but is considerebly simpler and requires a VCVS gain about half
as large (i.e., Ay = 1/2 K1). Although we will be considering networks
containing distributed elements that do not have a rational transfer
function, the amplitude response produced by these networks is adequately
represented by the amplitude response of a rational transfer function.

EQUIVALENT POLE. POSITIONS

Since we are concerned with obtaining an amplitude response equivalent
to that of either a 2-pole 2-zero, or a 2-pole function, we will consider
equivalent pole positions for the DLA networks. It is this concept of an
equivalent set of pole positions which allows the development of a simple
and practical synthesis procedure for DIA networks. This is similar to
the effective dominant pole idea for passive, distributed RC networks
proposed by Ghausi and Kelly (ref. 8).

The first DLA network to be considered (Fig. 2) produces an amplitude
response similar to that of the network of Fig. 1(a), which has two complex




poles and two jw axis zeros. The values have been chosen to produce jw
axis zeros at w = %1.0 rps, that 1s, Re/Ry, = 17.786 and R,Co = 11.192
(ref. 6) for a uniform line. If we match the DIA network amplitude response
for various values of gain, A;, and capacity, C, to that of a rational
2-pole, 2 jw axis zero function in a sufficient number of cases, the equiv-
alent pole positions of the DLA network can be plotted as a function of the
DIA network parameters Aj, and C; this allows synthesis directly from a
given rational voltage transfer function. The zeros must be located at a
greater distance from the origin than the poles since, for the DLA network
of Fig. 2, €1 must be less than 1.

Figure 3 compares the response of 2-pole 2-zero functions and the
calculated response of the DLA network of Fig. 2 for two different values
of Aj; and C. The only significant deviation occurs well into the stop
band, and is in a direction to improve the performance of the filter.

The result of matching this amplitude response in many cases is
shown as a pole position (o + jw) in Fig. 4 for values of A; from 0.5
to 1.7 and of C from O to 0.5 fd. The zeros of this network are, of
course, located at w = 1.0 rps for all values of Ay and C.

The DLA network suited to the production of an equivalent set of two
complex poles and two jw axis zeros with poles that lie above and to the
left of the region given by the curve C = O in Fig. 4 is shown in Fig. 5.
This network is normalized to unit feedback resistance and the line ele-
ments are chosen to give zeros on the jw axis at w = %1.0 rps when an untap-
ered RC line is used as before. The only adjustable parameters are then As
and R. The calculation of the amplitude response of this DLA network for
various values of Ao and R allowed a match to be made to a 2-pole, 2-zero
function. Typical comparisons are shown in Fig. 6 for two values of Ao
and R. The deviations shown are typical of the type to be expected. The
positions of the equivalent poles (for o + jw) are shown in Fig. 7 for
values of Az from 0.6 to 1.35 and of R from 10 § to o«. The zeros
are located at w = £1.0 rps. The synthesis procedure is thus to locate the
desired pole position on Fig. T and read off the values of As and R
required in the network of Fig. 5 to produce that equivalent pole position.

The last DLA network has an amplitude response equivalent to that of
a single-pole pair. In the past, the agtive RC network (Fig. 8(a)) has
been used to produce a 2-pole function using a VCVS as the active element
(ref. 2). A very simple network producing approximately a 2-pole transfer
function is the DLA network shown in Fig. 8(b). In this case, the ampli-
fier gain required (Az) is always less than 0.9206! A typical comparison
of the amplitude response of this network and a 2-pole function is shown
in Fig. 9. The resulting equivelent pole positions for this network are
shown in Fig. 10 for various values of line capacity Co and amplifier
gain Ag, for Ro = 1 Q. Note that variations of Co (or Rg) do not
change the system @, only the frequency is affected; Q@ is changed only
by variations in the amplifier gain.

This circuit is particularly useful as an oscillator since only a
single RC line and an emitter follower are required. The frequency of




oscillation can be determined from Fig. 10 for various values of capacity
Co for Ry = 1 & Dby noting the intersection of the C, curves with the
Jw axise.

DLA NETWORK SYNTHESIS EXAMPLE

As an example of the application of the procedures developed here,
a 5-pole, b ju axis zero, low-pass filter was synthesized. The transfer
function was obtained from Skwirzynski (ref. 9, pp. 439-500). This is
a convenient source of transfer functions in factored form which are
directly applicable to synthesis with DLA RC networks.

The function chosen, Eq. (2), has an equal ripple pass band with a
tolerance of 0.5 dB and an equal ripple stop band with a minimum
attenuation of 4O dB:

(p) = 0.168(0.359p%+1) (0. 738p%+1) (2)
(p=+0.488p+0.501) (p+0.11 4p+0.808) (p+0. 416)

This function has a cut-off frequency (-0.5 dB) of w = 0.886 and is 40 4B
down at w = 1.13 (ref. 9).

We will now split this function into three parts (neglecting the con-
stant multiplier) and realize each one separately with DLA networks. A
multiplier of 0.416 is assumed for the third factor, Tc(p), to make it
realizable with a passive RC network. If the overall gain realized is not
acceptable, either attenuation or additional gain can, of course, be added:

_ _0.359p% +1
Ta(P) = 207188 + 0501 (3)

_ 0.738p% + 1
To(p) = =7 6.1Thp + 0,508 (&)

_0.416
T.(p) = 3% 0.01% (5)

If we now substitute sZ = 0.359p%. in Ta(p), Eq. (3), to place
the zeros at w = £1 we obtain the normalized equation

, _ s2 +1
Ta(s) = 2.785s2 + 0.81ks + 0.501 (6)

This must be done in all cases since the design charts have their zeros

at w = %£l. The poles of T4(s) are located at s = -0.146 % jO.398.
Since the zeros are beyond the poles, this function can be realized by the
DLA network of Fig. 2. From Fig. U4 we find that a gain A; = 1.11 and a
capacity C = 0.1k fd are required. The resulting network is shown in
Fig. 11. Since we made the substitution s% = 0.359p® (p = 1.67s), the
transformation to the p plane is accomplished by dividing all
capacitances of Fig. 11 by 1.67 to obtain the lst section of the network
of Fig. 13, which approximates Ta(p)-




The next factor to be realized, Ty(p), Eq. (4) is normalized by
substituting s® = 0.738p® which gives Eq. (7).
52+l (7)
1.355s2 + 0.133s + 0. 808

Ty(s) =

The poles of Ty (s) are located at s = -0.049 £ jO.T7 (zeros beyond the
poles as before), and we find from Fig. 4 that a gain A; = 1.03 and a
capacity C = 0.023 fd are necessary. The network approximating Tﬁ(s)

is shown in Fig. 12. From the relation s® = 0.738p2 (p = 1l.16Ls), we
transform the network of Fig. 12 to the p plane by dividing all capac-
itances by 1.164 to obtain the 2nd section of the network shown in Fig. 13,
which approximates Tp(p). The realization of To(P), Eq. (5), is shown
as the 3rd section of the network in Fig. 13 and as indicated in Fig. 13
the cascade connection of the individual sections realizing T (p), Tb(p),
and Tc(p) completes the design. To bring the capacitor levels closer
together, each section can be independently impedance-scaled (alternate
values are shown in parentheses in Fig. 13).

The deviation of the DLA network responses from the theoretical
amplitude responses are shown in Fig. 14 where the response of T,(p) is
compared with that of DLA;, Ty(p) with DLAo, and the overall amplitude
response T(p) with the DLA network response, DLA. The resultant filter
performance is unchanged from the theoretical equal ripple response in
both the pass and stop bands, but has a greater attenuation following the
second stop band peak. For clarity in Fig. 14, the individual D.C. gains
are not shown; that is, all functions are plotted normalized to a D.C.
value of O dB.

CONCLUSIONS

In all of the DLA networks considered, the number of capacitors
required is equal to or less than the minimum number of capacitors required
by a lumped active RC realization, if we count the capacity of a distributed
RC line as a single capacitor. This minimum number of capacitors is equal
to the degree of the denominator of the transfer function for the lumped
active RC network, although practical networks generally use more than the
minimum number.

The DLA networks used have been chosen for their practicality and
simplicity. The element spread is generally no more than 20 to 1 for the
resistances and capacitances, and the element sizes required are similar
to those required by other active RC techniques. The frequency limitations
are generally determined by the amplifier used and the gain stability
required in the overall circuit. At @ values from 10 to 20, the amplifier
must be 20 to 4O times as stable in gain as the required system stability.
If the system is to be stabilized to 1 or 2%, then this Q value is about
as high as is practical.

The synthesis procedure developed for DLA networks has been concerned
only with the amplitude response. No attempt has been made to obtain a




particular phase or transient response; however, two maximally flat, low-
pass filters (3-pole, 2-zero) with a cut-off frequency of 5.4 KHz and an
infinite rejection frequency of 10.8 KHz were compared experimentally.

The first was an active RC circuit containing only lumped elements and the
second used DLA RC networks. There was no measurable difference in delay
time, rise time, or overshoot to a step input.
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Fig. 4.- Equivalent pole Positions for the distributed-lumped-asctive
network of Fig. 2.
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